Velocity and celerity dynamics at plot scale inferred from artificial tracing experiments and time-lapse ERT
نویسندگان
چکیده
The relationship between tracer velocities and wave or wetting front celerities is essential to understand water flowing from hillslopes to the stream. The connection between maximum velocity and celerities estimated by means of experimental techniques has not been explored. To assess the pattern of infiltrating water front and dominant flow direction, we performed sprinkling experiments at a trenched plot in the Weierbach catchment in Luxembourg. Maximum velocities and wetting front celerities were inferred at different depths using artificial tracers, soil moisture measurements (TDR), and geophysical techniques. The flow direction was predominantly vertical within the observed plot, with almost no lateral flow observed until depths of 2–3 m; shallow trench flow was intermittent and associated with preferential flow. Average celerity estimates using TDR and geophysical techniques were equal to 707 ± 234 mm h 1 and 971 ± 625 mm h , respectively. Vertical maximum velocity estimates were tracer-dependent and had very variable ranges: 109.3 ± 89.3 mm h 1 (Cl ), 177.8 ± 199.1 mm h 1 (Br ), and 604.1 ± 610.7 mm h 1 (Li). Preferential flow processes were inferred from maximum velocities apparently greater than celerities and scattered trench flow with highly variable tracer concentrations. The high variability between maximum velocities of different tracers indicated a complex pattern of tracer movement through the soil, not captured by celerity values alone. Our study demonstrated the importance to assess both velocities and celerities to understand flow dynamics in response to sprinkling while information on the wetting front alone would have missed important preferential flow processes. 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
منابع مشابه
Detection and determination of groundwater contamination plume using time-lapse electrical resistivity tomography (ERT) method
Protection of water resources from contamination and detection of the contaminants and their treatments are among the essential issues in the management of water resources. In this work, the time-lapse electrical resistivity tomography (ERT) surveys were conducted along 7 longitudinal lines in the downstream of the Latian dam in Jajrood (Iran), in order to detect the contamination resulting fro...
متن کاملCombined application of computational fluid dynamics (CFD) and design of experiments (DOE) to hydrodynamic simulation of a coal classifier
Combining the computational fluid dynamics (CFD) and the design of experiments (DOE) methods, as a mixed approach in modeling was proposed so that to simultaneously benefit from the advantages of both modeling methods. The presented method was validated using a coal hydraulic classifier in an industrial scale. Effects of operating parameters including feed flow rate, solid content and baffle le...
متن کاملLarge Scale Experiments Data Analysis for Estimation of Hydrodynamic Force Coefficients
This paper describes the various frequency domain methods which may be used to analyze experiments data on the force experienced by a circular cylinder in wave and current to estimate drag and inertia coefficients for use in Morison’s equation. An additional approach, system identification techniques (SIT) is also introduced. A set of data obtained from experiments on heavily roughened circular...
متن کاملFluorescent particle tracers in surface hydrology: a proof of concept in a semi-natural hillslope
In this paper, a proof of concept experiment is conducted to assess the feasibility of tracing overland flow on an experimental hillslope plot via a novel fluorescent particle tracer. Experiments are performed by using beads of diameters ranging from 75 to 1180 μm. Particles are sensed through an experimental apparatus comprising a light source and a video acquisition unit. Runoff on the experi...
متن کاملNegative Surges in Open Channels: Physical and Numerical Modeling
Negative surges can be caused by a sudden change in flow resulting from a decrease in water depth. In the present study, some physical experiments were conducted in a rectangular channel to characterize the unsteady free-surface profile and longitudinal velocity beneath a negative surge propagating upstream. The physical observations showed that, during the first initial instants, the celerity ...
متن کامل